

The Charge Form Factor of the Neutron at Low Q²

- Introduction/Motivation
- BLAST Experiment
- Results and Discussion

The Charge Form Factor of the Neutron at Low Q²

Experimental Program

High quality data for nucleon and deuteron structure by means of *spin-dependent electron scattering*

Pol. H
$$\vec{p}(\vec{e},e') \quad \vec{p}(\vec{e},e'p) \quad \vec{p}(\vec{e},e'\pi^+)n, \vec{p}(\vec{e},e'p)\pi^o, \vec{p}(\vec{e},e'n)\pi^+$$

$$\text{Gen. GDH} \quad G^p_E/G^p_M \quad \text{N-}\Delta: C2/M1$$

$$\vec{d}(\vec{e},e') \quad \vec{d}(\vec{e},e'p) \quad \vec{d}(\vec{e},e'n) \quad \vec{d}(\vec{e},e'd)$$

$$G^n_M \quad \text{D-state} \quad G^n_E \quad T^e_{11}$$

$$\text{Tens-Pol. D} \quad \vec{d}(e,e'd) \quad \vec{d}(e,e'p)$$

$$T_{20} \quad \text{D-state}$$

Scientific Motivation

- Nucleon form factors provide basic information on nucleon structure
- Gⁿ_E is the least known among the nucleon form factors, with errors of typically 15-20%
- Low-Q² region is a testing ground for QCD and pion-cloud inspired and other effective nucleon models
- Gn_F related to neutron charge distribution
- Precise knowledge of Gⁿ_E is essential for parity violation experiments

MIT-Bates Linear Accelerator Center

■ Linac: 2×500 MeV

■ Beam: 850 MeV / I_{max} = 225 mA / P_e = 65 %

■ SHR: Siberian Snake + Compton Polarimeter

Target: Internal Target = Atomic Beam Source

Atomic Beam Source

- Isotopically pure H or D
 - Vector Polarized H
 - Vector and Tensor D
- Target Thickness/Luminosity
 - \Box Flow 2.2 x 10¹⁶ atoms/s
 - □ Density 6 x 10¹³ atoms/cm²
 - Luminosity 6 x 10^{31} cm⁻²s⁻¹
- Target Polarization typically 70-80%

Atomic Beam Source

Atomic Beam Source

- Quasielastic ${}^2\ddot{H}(\vec{e},e'n)p$
- Beam-Target Asymmetry
- $\bullet A^{v}_{ed}(exp) = h \cdot P_{z} \cdot A^{v}_{ed}(th)$
- $\langle hP_7 \rangle = 0.567 \pm 0.006$

$$\langle P_7 \rangle = 0.85 \pm 0.04$$

$$< h> = 0.67 \pm 0.04$$

BLAST Detectors

- Left-Right symmetry
- Large Acceptance
 - \Box 0.1 < Q²/(GeV/c)² < 1.0
- Coils: B = 3.8 kG
- **Drift Chambers**

PID, tracking

□ δθ ≈ 0.5°, $\frac{\delta p}{n}$ ≈ 3%

- **Cerenkov Counters**
 - \Box e, π separation
- Scintillators
 - □ TOF, PID, trigger
- Neutron Counters
 - **Neutron ToF**

Kinematics and Observables

- Electrodisintegration of the Deuteron
- Quasi-elastic ²H(e,e'n)
- Beam + Target Polarized

$$\frac{d\sigma}{d\Omega_{e}dE_{e'}d\Omega_{CM}} = S_{0}(1 + P_{d}^{V}A_{d}^{V} + P_{d}^{T}A_{d}^{T} + h(A_{e} + P_{d}^{V}A_{ed}^{V} + P_{d}^{T}A_{ed}^{T}))$$

$$A_{ed}^{V} = \frac{aG_{M}^{n^{2}}\cos\theta^{*} + bG_{E}^{n}G_{M}^{n}\sin\theta^{*}\cos\phi^{*}}{cG_{E}^{n^{2}} + G_{M}^{n^{2}}} \approx a\cos\theta^{*} + b\frac{G_{E}^{n}}{G_{M}^{n}}\sin\theta^{*}\cos\phi^{*}$$

Experimental Layout

Experimental Layout

Experimental Layout

BLAST

Blast data

- 3 MC integrated charge delivered to BLAST
- Programs for polarized hydrogen and vector/tensor polarized deuterium
- Deuterium run May-October 2004, spin angle 32° 450 kC charge (169 pb⁻¹), $P_7 = 85\%$, $P_{77} = 66\%$
- Deuterium run March-May 2005, spin angle 47° 550 kC charge (150 pb⁻¹), $P_z=70\%$, $P_{zz}=54\%$
- Preliminary data will be presented for 2004 run

Invariant Mass and Time of Flight

- Very clean quasi-elastic ²H(e,e'n)p spectrum
- Highly efficient proton veto (Wire Chambers)

Invariant Mass and Time of Flight

- Very clean quasi-elastic ²H(e,e'n)p spectrum
- Highly efficient proton veto (Wire Chambers)

Extraction of Gn_E

- Quasielastic ${}^2\vec{H}(\vec{e},e'n)p$
- Full Monte Carlo Simulation of the BLAST experiment
- Deuteron Electrodisintegration cross section calculations
 by H. Arenhövel
- Accounted for FSI, MEC, IC, RC
- Spin-perpendicular beam-target asymmetry A_{ed}^V(90°,0°) shows high sensitivity to Gⁿ_E

Extraction of G_E

- Quasielastic ${}^2\vec{H}(\vec{e},e'n)p$
- Full Monte Carlo Simulation of the BLAST experiment
- Deuteron Electrodisintegration cross section calculations
 by H. Arenhövel
- Accounted for FSI, MEC, IC, RC
- Spin-perpendicular beam-target asymmetry A_{ed}^V(90°,0°) shows high sensitivity to Gⁿ_F
- Compare measured A_{ed}^V with BLASTMC, varying Gⁿ_E

Systematic Errors

 Uncertainty of target spin angle 12% per degree 	5%
 Beam-target polarization product 	2.5%
Radiative effects	<1.0%
 Small helicity dependency 	
■ Uncertainty of G^{η}_{M}	1.5%
Model dependency	<3%
 Effect of potential negligible 	
 Final state interaction reliable 	
Total:	6.6%

Results and Discussion

• World data on G_n^F from double pol. Experiments

Results and Discussion

- World data on \mathcal{F}_n from double pol. Experiments
- Including BLAST 2004

Results and Discussion

- World data on \mathcal{F}_n from double pol. Experiments
- Including BLAST 2004
- BLAST Fit
 - \Box < r_n^2 > = -0.115 fm²

World data on \$\mathcal{G}^{\eta}_{E}\$ from double pol.
 Experiments

- World data on G_E from double pol. Experiments
- Dispersion Theory

- World data on G_E from double pol.
 Experiments
- Dispersion Theory
- Chiral Soliton

- World data on G_E from double pol. Experiments
- Dispersion Theory
- Chiral Soliton
- R-CQM

- World data on G_E from double pol.
 Experiments
- Dispersion Theory
- Chiral Soliton
- R-CQM
- Cloudy bag

BLAST

Conclusion

- Measure Gⁿ_E with quasielastic scattering of polarized electrons from vector-polarized deuterium using BLAST at MIT-Bates
- Very small systematic errors
- G_E^n overall known to $\approx 5\%$ at $Q^2 < 1$ (GeV/c)²
- Dispersion theory gives the best description
- No theory describes Gⁿ_E at low and high Q² simultaneously
- Evidence for enhancement at low Q² role of pion cloud?

BAST

Outlook

- Only half of the BLAST data analyzed so far, prel. results of full dataset envisioned for December 2005
- With new precision data of T_{20} from BLAST and with improved A(Q²) new attempt to G_E^n determine from G_O
- ed elastic analysis: Mainz-Saclay discrepancy 8% in $A \Rightarrow$ factor of 2 in G^n_E
 - \square New measurements of A(Q²) at JLab (E-05-004) and MAMI
- Extension of G_E^n at high $Q^2 < 3.5$ (GeV/c)² (E-02-13)
- Proposal of BLAST@ELSA/Bonn
 Measure Gⁿ_E for Q² = 0.04-1.5 (GeV/c)² with both vector-polarized ²H and polarized ³He